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Presentation outline 

• Goals and objectives 

• Benefits to the program 

• Project overview 

• Technical status 

• Accomplishment to date 

• Summary 
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Objective 

Masonry blocks Fiber-cement panels 
Prefabricated 

buildings 

Concrete pipes 

To develop a carbonation process to replace steam curing in precast 

concrete production for energy reduction, and carbon storage and 

utilization.  



Goals 

• CO2 sequestration capacity by cement: 

%CO2  = 0.78 CaO + 1.1 MgO + 1.4 Na2O + 0.9 

K2O 

• CO2 uptake target: 

– Each 8” concrete block shall take 0.75 lb CO2 

(25% based on dry cement ) 

– Each 4’x8’ fiber-cement panel shall take 10.5 

lb CO2 (30% based on dry cement) 

• Utilization process cost shall be less than 

$10/tCO2 

• CO2 capture cost shall be less than 

$50/tCO2 
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 Benefit to the Program  

• Develop technologies that will support industries’ 

ability to capture and utilize CO2 at the vicinity of 

the sources.  

• Concrete blocks are produced at 4.3 billion 

units/year in US and fiber-cement panels are 

produced at 9.8 billion ft2/year in US. 

• If the uptake targets can be met, concrete block 

industry and fiber-cement industry alone can utilize 

2.9 Mt CO2 every year in the United States.  
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 Project overview 

• Produce commercial blocks and panels in lab  

• Maximize carbonation by optimizing process 

parameters  

• Develop CO2 recovery process by self-

concentration absorption method 

• Evaluate performance of carbonated products 

• Recover CO2 from residual gas 

• Perform experiment production 

• Conduct cost analysis    
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 Carbonation Mechanism 

• Carbonation curing of fresh concrete (C3S, C2S):  

 

 

• Carbonation curing after initial hydration (CH, CSH, 

C3S, C2S): 

 

 

 

• CO2 diffusion in precast products: 
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Static carbonation setup 
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Dynamic carbonation setup 
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CO2 uptake calculation 

• Mass gain method (average) 

 

• Mass curve method (average) 

 

 

 

 

• Furnace thermal analysis (30-70g mass) 
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Fresh concrete carbonation 
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Uptake Strength/4H 2H+2C in static system 

P=0.1MPa,  



Carbonation after 18 hr hydration 
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Uptake Strength/20H 
18H+2C in static system 

Air curing in RH=60% 

Water loss=35% 

P=0.1MPa 



Water loss in initial open air hydration 

Water loss due to initial hydration at different  RH condition (W/C=0.6) 
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Effect of water removal on carbon uptake 
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Effect of gas pressure 
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Gas Pressure 

Uptake Strength/20H 
W/C=0.6 

18H+2C in static system 

Air curing in RH= 20% 

Water loss around 60% 

 



Effect of carbonation duration 
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Carbonation time 

uptake Strength W/C=0.6 

Carbonated in static system 

Water loss 50% 
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Dynamic for fresh carbonation 
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Uptake Strength/4H Fresh concrete 

W/C=0.6 

2H+2C  in dynamic system 

P=0.1Mpa 



Dynamic for hardened carbonation 
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Uptake Strength/20H 
W/C=0.6 

18H+2C  in dynamic system 

Water loss 35% 

Air curing in RH= 60% 

P=0.1Mpa  

 



Full size concrete blocks 
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Carbonation of fiber-cement panels  
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initial water/cement ratio before carbonation 

Carbonation 

flexural strength /18.5H 

compressive strength /18.5H 

18H+0.5C in static system 

Curing  in air  

P=0.5 MPa 

 



Effect of pressure and duration   

NO. 
Process 

parameters 

Molding 

pressure 

Air curing 

time 

Carbonation 

time 

Carbonatio

n pressure 

A Reference 0.7 Mpa 18H 0.5 H 5 bar 

B Gas pressure  0.7 Mpa 18H 0.5 H 2 bar 

C Time 0.7 Mpa 18H 4 H 5 bar 

D Molding pressure 7 Mpa 18H 4H 5 bar 

E Air curing(Hydration only reference) 

F Sealed in bag(Hydration only reference) 
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Carbonation 

flexural strength/24H 

Compressive 
Strength/24H 

Carbonation in static system 

Initial water/cement ratio 0.20-0.24 



Near surface dynamic carbonation 

No. 
Molding 

pressure 

Air curing 

time 

Oven 

curing 

time 

Carbonation 

time 

Carbonati

on 

pressure 

Carbonation method 

G 0.7 Mpa 18H / 0.5 H 5 bar static 

H 0.7 Mpa / 0.5H 0.5 H 5 bar static 

J 0.7 Mpa 18H / 0.5 H 2bar Near surface with gas flow 

K 0.7Mpa 18H / 0.5 H 2 bar 
Near surface with  vacuum 

at bottom 

Table 2  influencing factor of carbonation 
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G:Static+air dry 

H:Static+oven dry 

J: Near surface with gas flow 

K:Near surface with  vacuum at 

Observation: 

1) In static system, air dry method 

is superior  to oven dry. 

2) Near surface carbonation 

method with vacuum at bottom 

has the potential to improve the 

carbonation reaction. 
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Large fiber cement panel (1’x2’) tests  

1’×2’ panel sample and test chamber 

Table 3: Results of 1’×2’  panels (static carbonation) 

NO. Pressure 
Carb. 

Time 

Air curing 

time* 

Oven dry 

time** 

CO2 

uptake 

28d Strength, Mpa*** 

Flexural Compressive 

Slab 1 

2 bar 

1 H 18 H 

 2H 

16.06% 6.03±1.07 10.05±2.97 

Slab 2 1 H 18 H 16.52% 5.91±1.17 7.86±2.21 

Slab 3 12 H 18 H 20.46% 6.57±0.52 8.97±3.00 

Observation: 

1) The process is possible to be 

scaled up. 

2) Carbon uptake reaches to 16-

20%. 

3) Flexural and compressive 

strengths are comparable to 

commercial products. 
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Flue gas capture and CO2 recovery  

 
• Flue gas was collected from cement plant 

• The flue gas contains 13% CO2 at 2000 psi.  
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CO2 recovery by  

Self-Concentration Absorption Method  

• Developed and patented by 3H Company. 

• Increased height of absorber enables capture 

efficiency to 90% and recovered CO2 purity 

to 99%. 

25 



Accomplishments to Date 

– Static and dynamic carbonation systems are developed 

for concrete block and fiber-cement panel production. 

– Carbonation chambers are designed and fabricated for 

laboratory investigation and can be scaled up for 

commercial production. 

– Carbon uptake of 16-25% for concrete blocks and 16-

30% for fiber-cement panels are reached at laboratory 

optimized conditions. 

– CO2 recovery system using self-concentrating 

absorption method is modified to reach a capture 

efficiency of 90%. 
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 Project Summary 

• Carbonation of hydration products is more efficient 

than carbonation of calcium silicates. 

• Longer reaction time and higher gas pressure lead 

to higher reactivity. 

• Water content in precast products plays critical role 

in promoting the degree of carbonation. 

• The cost limit by $10/tCO2 is challenging. 

• Carbon uptake and cost limit are conflicting. 
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 Future work 

• The system will be further optimized to reduce 

energy use in every step. 

• Cost analysis will be performed together with 

technology development.  

• Self-concentration absorption method will be used 

to recover CO2 from residual gas after process. 

• Experiment production will be carried out to link 

CO2 capture to CO2 utilization. 

• Large scale network operation will be established 

to implement CO2 capture, compression, transport 

and utilization. 

 

28 



Appendix 

– These slides will not be discussed during the 

presentation, but are mandatory 
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Organization Chart 

• Describe project team, organization, and 

participants. 
– McGill University (Materials development, carbonation 

systems, performance assessment, cost analysis.) 

– 3H Company (Self-concentrating absorption system, 

cost analysis, carbonation systems.) 
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Gantt Chart 

The following tasks are accomplished in Budget Period 1: Task 1.0 – Project Management and 

Planning; Task 2.1 Fabricate Block CO2clave; Task 2.2 Fabricate Panel CO2clave; Task 3.1 Prepare 

Cement Mixes; Task 3.2 Prepare Blocks; Task 3.3 Prepare Panels; Task 3.4 Use Seeding 

Technology; Task 4.1 Conduct Single Block Tests; Task 4.3 Conduct Panel Tests; Task 6.1 Capture 

of Flue Gas from Power Plant or Cement Plant for CO2 Recovery; Task 6.2 Production of CO2 

Using Self-Concentrating Absorption Technology. Task 7.1 Determine Utilization Cost. 
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